Testing the AROME Hybrid 3DEnVar for convective-scale NWP over Austria

Aktivität: VorträgePosterpräsentationScience to Science

Beschreibung

Ensemble and hybrid ensemble-variational Data Assimilation (DA) methods incorporating ensemble-based flow-dependent error statistics into state estimation have emerged in recent decades. In a hybrid DA, the background error covariances are a combination of ensemble covariances and static climatology. The ensemble component provides flow-dependency and non-linear error growth critical for convective-scale models, and the static climatology mitigates the effects of a small ensemble size. Hybrid ensemble variational DA methods were recently implemented in the convective-scale NWP model AROME at Meteo-France.

We present our findings from testing Hybrid-3-Dimensional Variational Data Assimilation in convective-scale NWP model AROME over Austria. Given Austria's unique alpine orography, we investigate the impact of applying different weighting to flow-dependent covariances in hybrid DA for a summertime convection case over central Europe. In addition to the hybrid weights, we explore optimal ensemble size, the increase of ensemble size with a time-lagged approach as well as suitable localization settings. Finally, we compare our results to the 3-dimensional variational data assimilation (3DVar) operational model forecast of GeoSphere Austria and discuss the potential benefits, drawbacks, and challenges of using hybrid DA over traditional 3DVar.
Zeitraum2023
EreignistitelEGU, General Assembly 2023
VeranstaltungstypKonferenz
OrtWien, ÖsterreichAuf Karte anzeigen
BekanntheitsgradInternational