A dual pair for the contact group

Stefan Haller, Cornelia Vizman

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

Generalizing the canonical symplectization of contact manifolds, we construct an infinite dimensional non-linear Stiefel manifold of weighted embeddings into a contact manifold. This space carries a symplectic structure such that the contact group and the group of reparametrizations act in a Hamiltonian fashion with equivariant moment maps, respectively, giving rise to a dual pair, called the EPContact dual pair. Via symplectic reduction, this dual pair provides a conceptual identification of non-linear Grassmannians of weighted submanifolds with certain coadjoint orbits of the contact group. Moreover, the EPContact dual pair gives rise to singular solutions for the geodesic equation on the group of contact diffeomorphisms. For the projectivized cotangent bundle, the EPContact dual pair is closely related to the EPDiff dual pair due to Holm and Marsden.
OriginalspracheEnglisch
Seiten (von - bis)2937-2973
Seitenumfang37
FachzeitschriftMathematische Zeitschrift
Jahrgang301
Ausgabenummer3
Frühes Online-Datum15 März 2022
DOIs
PublikationsstatusVeröffentlicht - Juli 2022

ÖFOS 2012

  • 101032 Funktionalanalysis
  • 101002 Analysis
  • 101006 Differentialgeometrie

Zitationsweisen