A Nečas-Lions inequality with symmetric gradients on star-shaped domains based on a first order Babuška-Aziz inequality

Michele Botti

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

We prove a Nečas-Lions inequality with symmetric gradients on two and three dimensional domains of diameter R that are star-shaped with respect to a ball of radius ρ; we exhibit a bound for the constant appearing in that inequality, which is explicit with respect to R and ρ. Crucial tools in the derivation of such a bound are a first order Babuška-Aziz inequality based on Bogovskiĭ's construction of a right-inverse of the divergence and Fourier transform techniques proposed by Durán. As a byproduct, we derive arbitrary order estimates in arbitrary dimension for Bogovskiĭ's operator, with upper bounds on the corresponding constants that are explicit with respect to R and ρ.

OriginalspracheEnglisch
Aufsatznummer129159
FachzeitschriftJournal of Mathematical Analysis and Applications
Jahrgang545
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - 15 Mai 2025

ÖFOS 2012

  • 101014 Numerische Mathematik

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Nečas-Lions inequality with symmetric gradients on star-shaped domains based on a first order Babuška-Aziz inequality“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen