Abstract
We provide a pointwise bipolar theorem for lim inf-closed convex sets of positive Borel measurable functions on a σ-compact metric space without the assumption that the polar is a tight set of measures. As applications we derive a version of the transport duality under nontight marginals, and a superhedging duality for semistatic hedging in discrete time.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1483-1495 |
Seitenumfang | 13 |
Fachzeitschrift | Proceedings of the American Mathematical Society |
Jahrgang | 147 |
Ausgabenummer | 4 |
DOIs | |
Publikationsstatus | Veröffentlicht - 2019 |
ÖFOS 2012
- 101024 Wahrscheinlichkeitstheorie
- 101007 Finanzmathematik