TY - JOUR
T1 - A polynomial-degree-robust a posteriori error estimator for nédélec discretizations of magnetostatic problems
AU - Gedicke, Joscha
AU - Geevers, Sjoerd
AU - Perugia, Ilaria
AU - Schöberl, Joachim
N1 - Funding Information:
\ast Received by the editors April 22, 2020; accepted for publication (in revised form) May 24, 2021; published electronically August 12, 2021. https://doi.org/10.1137/20M1333365 Funding: The work of the second, third, and fourth authors was supported by the Austrian Science Fund (FWF) through the project F 65 ``Taming Complexity in Partial Differential Systems."" The work of the third author was also funded by the FWF through the project P 29197-N32. \dagger Institute for Numerical Simulation, University of Bonn, Bonn, 53115, Germany ([email protected]). \ddagger Faculty of Mathematics, University of Vienna, Vienna, 1090, Austria (sjoerd.geevers@univie. ac.at, [email protected]). \S Institute for Analysis and Scientific Computing, Vienna Institute of Technology, Vienna, 1040, Austria ([email protected]).
Publisher Copyright:
Copyright © by SIAM.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021
Y1 - 2021
KW - A posteriori error analysis
KW - Equilibration principle
KW - High-order Nédélec elements
KW - Magnetostatic problem
KW - equilibration principle
KW - magnetostatic problem
KW - high-order Nedelec elements
KW - a posteriori error analysis
UR - http://www.scopus.com/inward/record.url?scp=85113294959&partnerID=8YFLogxK
U2 - 10.1137/20M1333365
DO - 10.1137/20M1333365
M3 - Article
AN - SCOPUS:85113294959
VL - 59
SP - 2237
EP - 2253
JO - SIAM Journal on Numerical Analysis
JF - SIAM Journal on Numerical Analysis
SN - 0036-1429
IS - 4
ER -