A Revealed Imperfection in Concept Drift Correction in Metabolomics Modeling

Jana Schwarzerová (Korresp. Autor*in), Ales Kostoval, Adam Bajger, Lucia Jakubikova, Iro Pierides, Lubos Popelinsky, Karel Sedlar, Wolfram Weckwerth

Veröffentlichungen: Beitrag in BuchBeitrag in Buch/SammelbandPeer Reviewed

Abstract

Prediction models that rely on time series data are often affected by diminished predictive accuracy. This occurs from the causal relationships of the data that shift over time. Thus, the changing weights that are used to create prediction models lose their informational value. One way to correct this change is by using concept drift information. That is exactly what prediction models in biomedical applications need. Currently, metabolomics is at the forefront in modeling analysis for phenotype prediction, making it one of the most interesting candidates for biomedical prediction diagnosis. However, metabolomics datasets include dynamic information that can harm prediction modeling. The study presents concept drift correction methods to account for dynamic changes that occur in metabolomics data for better prediction outcomes of phenotypes in a biomedical setting.
OriginalspracheEnglisch
TitelInformation Technology in Biomedicine
Untertitel ITIB 2022. Advances in Intelligent Systems and Computing
ErscheinungsortCham
Herausgeber (Verlag)Springer
Seiten498-509
ISBN (Print)978-3-031-09134-6
DOIs
PublikationsstatusVeröffentlicht - 22 Juni 2022

Publikationsreihe

ReiheAdvances in Intelligent Systems and Computing
ISSN2194-5357

ÖFOS 2012

  • 106057 Metabolomik
  • 101028 Mathematische Modellierung
  • 102019 Machine Learning

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Revealed Imperfection in Concept Drift Correction in Metabolomics Modeling“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen