TY - JOUR
T1 - Ab Initio Calculation of UV-vis Absorption of Parent Mg, Fe, Co, Ni, Cu, and Zn Metalloporphyrins
AU - Ganguly, Gaurab
AU - Havlas, Zdenek
AU - Michl, Josef
N1 - Publisher Copyright:
© 2024 American Chemical Society.
Accession Number
WOS:001228921600001
PubMed ID
38770816
PY - 2024/6/3
Y1 - 2024/6/3
N2 - Relativistic restricted active space (RAS) second-order multireference perturbation theory (MRPT2) methods, incorporating spin-orbit (SO) coupling perturbatively via state interaction (SO-MRPT2/RASSCF), were used to reproduce the absorption spectra of parent metalloporphyrins containing the Mg2+, Zn2+, Co2+, Ni2+, Cu2+, or FeCl2+ ions in the 12,500-40,000 cm-1 region. Particular attention was paid to the interaction between the porphyrin ring and the metal 3d electrons in states of different multiplicities (we used metal 3d and double d-shell or 3d′ orbitals). For this class of compounds, the N-electron valence state perturbation theory (NEVPT2) method is superior to the complete active space perturbation theory (CASPT2) and successfully reproduces the energies of all four characteristic transitions (Q, B, N, and L) of closed-shell metalloporphyrins. Inclusion of SO coupling was found to have very little effect on excitation energies and oscillator strengths. For FeCl2+ porphyrin, we treated ligand-to-metal charge-transfer (LMCT; π,d), metal ligand field (d,d), and metal-to-ligand charge-transfer (MLCT; d,π*) transitions within the same framework. The broad and intense spectral features associated with its B (Soret) band are attributed to multiconfigurational LMCT (d,π*) bands involving strong metal-ligand orbital mixing.
AB - Relativistic restricted active space (RAS) second-order multireference perturbation theory (MRPT2) methods, incorporating spin-orbit (SO) coupling perturbatively via state interaction (SO-MRPT2/RASSCF), were used to reproduce the absorption spectra of parent metalloporphyrins containing the Mg2+, Zn2+, Co2+, Ni2+, Cu2+, or FeCl2+ ions in the 12,500-40,000 cm-1 region. Particular attention was paid to the interaction between the porphyrin ring and the metal 3d electrons in states of different multiplicities (we used metal 3d and double d-shell or 3d′ orbitals). For this class of compounds, the N-electron valence state perturbation theory (NEVPT2) method is superior to the complete active space perturbation theory (CASPT2) and successfully reproduces the energies of all four characteristic transitions (Q, B, N, and L) of closed-shell metalloporphyrins. Inclusion of SO coupling was found to have very little effect on excitation energies and oscillator strengths. For FeCl2+ porphyrin, we treated ligand-to-metal charge-transfer (LMCT; π,d), metal ligand field (d,d), and metal-to-ligand charge-transfer (MLCT; d,π*) transitions within the same framework. The broad and intense spectral features associated with its B (Soret) band are attributed to multiconfigurational LMCT (d,π*) bands involving strong metal-ligand orbital mixing.
UR - http://www.scopus.com/inward/record.url?scp=85193932381&partnerID=8YFLogxK
U2 - 10.1021/acs.inorgchem.3c04460
DO - 10.1021/acs.inorgchem.3c04460
M3 - Article
AN - SCOPUS:85193932381
SN - 0020-1669
VL - 63
SP - 10127
EP - 10142
JO - Inorganic Chemistry
JF - Inorganic Chemistry
IS - 22
ER -