Absolute standard hydrogen electrode potential and redox potentials of atoms and molecules: machine learning aided first principles calculations

Ryosuke Jinnouchi (Korresp. Autor*in), Ferenc Karsai, Georg Kresse

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

Constructing a self-consistent first-principles framework that accurately predicts the properties of electron transfer reactions through finite-temperature molecular dynamics simulations is a dream of theoretical electrochemists and physical chemists. Yet, predicting even the absolute standard hydrogen electrode potential, the most fundamental reference for electrode potentials, proves to be extremely challenging. Here, we show that a hybrid functional incorporating 25% exact exchange enables quantitative predictions when statistically accurate phase-space sampling is achieved via thermodynamic integrations and thermodynamic perturbation theory calculations, utilizing machine-learned force fields and Δ-machine learning models. The application to seven redox couples, including molecules and transition metal ions, demonstrates that the hybrid functional can predict redox potentials across a wide range of potentials with an average error of 140 mV.
OriginalspracheEnglisch
Seiten (von - bis)2335-2343
Seitenumfang9
FachzeitschriftChemical Science
Jahrgang16
Ausgabenummer5
Frühes Online-Datum23 Dez. 2024
DOIs
PublikationsstatusVeröffentlicht - 23 Dez. 2024

ÖFOS 2012

  • 103006 Chemische Physik
  • 103043 Computational Physics

Fingerprint

Untersuchen Sie die Forschungsthemen von „Absolute standard hydrogen electrode potential and redox potentials of atoms and molecules: machine learning aided first principles calculations“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen