TY - JOUR
T1 - Advancements and challenges in microalgal protein production: A sustainable alternative to conventional protein sources
AU - Ali, Sameh S.
AU - Al-Tohamy, Rania
AU - Al-Zahrani, Majid
AU - Schagerl, Michael
AU - Kornaros, Michael
AU - Sun, Jianzhong
PY - 2025/3/10
Y1 - 2025/3/10
N2 - The increasing global demand for sustainable protein sources necessitates the exploration of alternative solutions beyond traditional livestock and crop-based proteins. Microalgae present a promising alternative due to their high protein content, rapid biomass accumulation, and minimal land and water requirements. Furthermore, their ability to thrive on non-arable land and in wastewater systems enhances their sustainability and resource efficiency. Despite these advantages, scalability and economical feasibility remain major challenges in microalgal protein production. This review explores recent advancements in microalgal protein cultivation and extraction technologies, including pulsed electric field, ultrasound-assisted extraction, enzyme-assisted extraction, and microwave-assisted extraction. These innovative techniques have significantly improved protein extraction efficiency, purity, and sustainability, while addressing cell wall disruption and protein recovery challenges. Additionally, the review examines protein digestibility and bioavailability, particularly in the context of human nutrition and aquafeed applications. A critical analysis of life cycle assessment studies highlights the environmental footprint and economical feasibility of microalgal protein production compared to conventional protein sources. Although microalgal protein production requires significant energy inputs, advancements in biorefinery approaches, carbon dioxide sequestration, and industrial integration can help mitigate these limitations. Finally, this review outlines key challenges and future research directions, emphasizing the need for cost reduction strategies, genetic engineering for enhanced yields, and industrial-scale process optimization. By integrating innovative extraction techniques with biorefinery models, microalgal proteins hold immense potential as a sustainable, high-quality protein source for food, feed, and nutraceutical applications.
AB - The increasing global demand for sustainable protein sources necessitates the exploration of alternative solutions beyond traditional livestock and crop-based proteins. Microalgae present a promising alternative due to their high protein content, rapid biomass accumulation, and minimal land and water requirements. Furthermore, their ability to thrive on non-arable land and in wastewater systems enhances their sustainability and resource efficiency. Despite these advantages, scalability and economical feasibility remain major challenges in microalgal protein production. This review explores recent advancements in microalgal protein cultivation and extraction technologies, including pulsed electric field, ultrasound-assisted extraction, enzyme-assisted extraction, and microwave-assisted extraction. These innovative techniques have significantly improved protein extraction efficiency, purity, and sustainability, while addressing cell wall disruption and protein recovery challenges. Additionally, the review examines protein digestibility and bioavailability, particularly in the context of human nutrition and aquafeed applications. A critical analysis of life cycle assessment studies highlights the environmental footprint and economical feasibility of microalgal protein production compared to conventional protein sources. Although microalgal protein production requires significant energy inputs, advancements in biorefinery approaches, carbon dioxide sequestration, and industrial integration can help mitigate these limitations. Finally, this review outlines key challenges and future research directions, emphasizing the need for cost reduction strategies, genetic engineering for enhanced yields, and industrial-scale process optimization. By integrating innovative extraction techniques with biorefinery models, microalgal proteins hold immense potential as a sustainable, high-quality protein source for food, feed, and nutraceutical applications.
UR - http://dx.doi.org/10.1186/s12934-025-02685-1
U2 - 10.1186/s12934-025-02685-1
DO - 10.1186/s12934-025-02685-1
M3 - Article
SN - 1475-2859
JO - Microbial Cell Factories
JF - Microbial Cell Factories
ER -