Alternating proximal-gradient steps for (stochastic) nonconvex-concave minimax problems

Radu Ioan Bot, Axel Böhm (Korresp. Autor*in)

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

Minimax problems of the form minx maxy Ψ (x, y) have attracted increased interest largely due to advances in machine learning, in particular generative adversarial networks and adversarial learning. These are typically trained using variants of stochastic gradient descent for the two players. Although convex-concave problems are well understood with many efficient solution methods to choose from, theoretical guarantees outside of this setting are sometimes lacking even for the simplest algorithms. In particular, this is the case for alternating gradient descent ascent, where the two agents take turns updating their strategies. To partially close this gap in the literature we prove a novel global convergence rate for the stochastic version of this method for finding a critical point of ψ ( ) := maxy Ψ ( , y) in a setting which is not convex-concave.

OriginalspracheEnglisch
Seiten (von - bis)1884 - 1913
Seitenumfang30
FachzeitschriftSIAM Journal on Optimization
Jahrgang33
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - 2023

ÖFOS 2012

  • 102019 Machine Learning
  • 101016 Optimierung

Fingerprint

Untersuchen Sie die Forschungsthemen von „Alternating proximal-gradient steps for (stochastic) nonconvex-concave minimax problems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen