An automated, data-driven approach to children's social dynamics in space and time

Lisa Horn (Korresp. Autor*in), Márton Karsai, Gabriela Markova

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

Most children first enter social groups of peers in preschool. In this context, children use movement as a social tool, resulting in distinctive proximity patterns in space and synchrony with others over time. However, the social implications of children's movements with peers in space and time are difficult to determine due to the difficulty of acquiring reliable data during natural interactions. In this article, we review research demonstrating that proximity and synchrony are important indicators of affiliation among preschoolers and highlight challenges in this line of research. We then argue for the advantages of using wearable sensor technology and machine learning analytics to quantify social movement. This technological and analytical advancement provides an unprecedented view of complex social interactions among preschoolers in natural settings, and can help integrate young children's movements with others in space and time into a coherent interaction framework.

OriginalspracheEnglisch
Seiten (von - bis)36-43
Seitenumfang8
FachzeitschriftChild Development Perspectives
Jahrgang18
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - März 2024

ÖFOS 2012

  • 106051 Verhaltensbiologie

Fingerprint

Untersuchen Sie die Forschungsthemen von „An automated, data-driven approach to children's social dynamics in space and time“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen