AN ENTROPY STRUCTURE PRESERVING SPACE-TIME FORMULATION FOR CROSS-DIFFUSION SYSTEMS: ANALYSIS AND GALERKIN DISCRETIZATION

Marcel Braukhoff, Ilaria Perugia, Paul Stocker

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

Cross-diffusion systems are systems of nonlinear parabolic partial differential equations that are used to describe dynamical processes in several application, including chemical concentrations and cell biology. We present a space-time approach to the proof of existence of bounded weak solutions of cross-diffusion systems, making use of the system entropy to examine long-term behavior and to show that the solution is nonnegative, even when a maximum principle is not available. This approach naturally gives rise to a novel space-time Galerkin method for the numerical approximation of cross-diffusion systems that conserves their entropy structure. We prove existence and convergence of the discrete solutions and present numerical results for the porous medium, the Fisher-KPP, and the Maxwell-Stefan problem.

OriginalspracheEnglisch
Seiten (von - bis)364-395
Seitenumfang32
FachzeitschriftSIAM Journal on Numerical Analysis
Jahrgang60
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 2022

ÖFOS 2012

  • 101014 Numerische Mathematik

Zitationsweisen