An improved randomized algorithm with noise level tuning for large-scale noisy unconstrained DFO problems

Morteza Kimiaei

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

In this paper, a new randomized solver (called VRDFON) for noisy unconstrained derivative-free optimization (DFO) problems is discussed. Complexity result in the presence of noise for nonconvex functions is studied. Two effective ingredients of VRDFON are an improved derivative-free line search algorithm with many heuristic enhancements and quadratic models in adaptively determined subspaces. Numerical results show that, on the large scale unconstrained CUTEst test problems contaminated by the absolute uniform noise, VRDFON is competitive with state-of-the-art DFO solvers.
OriginalspracheEnglisch
FachzeitschriftNumerical Algorithms
PublikationsstatusAngenommen/In Druck - 17 Jan. 2025

ÖFOS 2012

  • 102022 Softwareentwicklung
  • 101016 Optimierung

Fingerprint

Untersuchen Sie die Forschungsthemen von „An improved randomized algorithm with noise level tuning for large-scale noisy unconstrained DFO problems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen