An Innovative Perspective on Metabolomics Data Analysis in Biomedical Research Using Concept Drift Detection

Jana Schwarzerova, Adam Bajger, Iro Pierides, Lubos Popelinsky, Karel Sedlar, Wolfram Weckwerth

Veröffentlichungen: Beitrag zu KonferenzPaperPeer Reviewed

Abstract

One of the most challenging scenarios of data analysis is prediction using time series data. As the underlying causal relationships of the data shift over time, a classification model trained on data at earlier points within the course starts to yield incorrect predictions on the current data. This phenomenon in machine learning is called concept drift. Within biomedical data, one of the molecular networks that changes significantly over a time is the metabolome. Using metabolomics analysis in biomedical applications produces an ideal tool in preventive healthcare, the pharmaceutical industry, and even ecology engineering. This study provides an innovative perspective on the analysis of metabolomics datasets using the concept of drift detection. The evaluation is based on two main objectives. The first objective is connected to the concept drift detection in available metabolomics datasets, and the second objective is to provide the assessment of commonly used machine learning tools for the best general detection approach in metabolomics datasets. The application of concept drift to metabolomics data has never been carried out before and is an original take on the analysis of highly dynamic molecular networks.
OriginalspracheEnglisch
Seiten3075-3082
Seitenumfang8
DOIs
PublikationsstatusVeröffentlicht - 9 Dez. 2021
Veranstaltung2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) - online, Unbekannt/undefiniert
Dauer: 9 Dez. 202112 Dez. 2021

Konferenz

Konferenz2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
Land/GebietUnbekannt/undefiniert
Zeitraum9/12/2112/12/21

ÖFOS 2012

  • 106005 Bioinformatik
  • 106057 Metabolomik
  • 106044 Systembiologie

Fingerprint

Untersuchen Sie die Forschungsthemen von „An Innovative Perspective on Metabolomics Data Analysis in Biomedical Research Using Concept Drift Detection“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen