Approximation by harmonic polynomials in star-shaped domains and exponential convergence of Trefftz hp-dGFEM

Ralf Hiptmair, Andrea Moiola, Ilaria Perugia, Christoph Schwab

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

We study the approximation of harmonic functions by means of harmonic polynomials in two-dimensional, bounded, star-shaped domains. Assuming that the functions possess analytic extensions to a δ-neighbourhood of the domain, we prove exponential convergence of the approximation error with respect to the degree of the approximating harmonic polynomial. All the constants appearing in the bounds are explicit and depend only on the shape-regularity of the domain and on δ. We apply the obtained estimates to show exponential convergence with rate O(exp(-b√N)) O (exp (-b N)), N being the number of degrees of freedom and b > 0, of a hp-dGFEM discretisation of the Laplace equation based on piecewise harmonic polynomials. This result is an improvement over the classical rate O(exp(-b 3√N)) O (exp (-b 3 N)), and is due to the use of harmonic polynomial spaces, as opposed to complete polynomial spaces. © 2014 EDP Sciences, SMAI.
OriginalspracheEnglisch
Seiten (von - bis)727-752
Seitenumfang26
FachzeitschriftESAIM: Mathematical Modelling and Numerical Analysis
Jahrgang48
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - Mai 2014

ÖFOS 2012

  • 101014 Numerische Mathematik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Approximation by harmonic polynomials in star-shaped domains and exponential convergence of Trefftz hp-dGFEM“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen