Automated Real-Space Lattice Extraction for Atomic Force Microscopy Images

Marco Corrias (Korresp. Autor*in), Lorenzo Papa, Igor Sokolović, Viktor Birschitzky, Alexander Gorfer, Martin Setvín, Michael Schmid, Ulrike Diebold, Michele Reticcioli, Cesare Franchini

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

Analyzing atomically resolved images is a time-consuming process requiring solid experience and substantial human intervention. In addition, the acquired images contain a large amount of information such as crystal structure, presence and distribution of defects, and formation of domains, which need to be resolved to understand a material’s surface structure. Therefore, machine learning techniques have been applied in scanning probe and electron microscopies during the last years, aiming for automatized and efficient image analysis. This work introduces a free and open source tool (AiSurf: Automated Identification of Surface Images) developed to inspect atomically resolved images via scale-invariant feature transform and clustering algorithms. AiSurf extracts primitive lattice vectors, unit cells, and structural distortions from the original image, with no pre-assumption on the lattice and minimal user intervention. The method is applied to various atomically resolved non-contact atomic force microscopy images of selected surfaces with different levels of complexity: anatase TiO 2(101), oxygen deficient rutile TiO 2(110) with and without CO adsorbates, SrTiO 3(001) with Sr vacancies and graphene with C vacancies. The code delivers excellent results and is tested against atom misclassification and artifacts, thereby facilitating the interpretation of scanning probe microscopy images.

OriginalspracheEnglisch
Aufsatznummer015015
Seitenumfang9
FachzeitschriftMachine Learning: Science and Technology
Jahrgang4
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 8 Feb. 2023

ÖFOS 2012

  • 102019 Machine Learning
  • 103009 Festkörperphysik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Automated Real-Space Lattice Extraction for Atomic Force Microscopy Images“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen