Projekte pro Jahr
Abstract
This paper describes a modal conception of sets, according to which sets are ‘potential’with respect to their members. A modal theory is developed, which invokes a naive comprehension axiom schema, modified by adding ‘forward looking’ and ‘backward looking’ modal operators. We show that this ‘bi-modal’ naive set theory can prove modalized interpretations of several ZFC axioms, including the axiom of infinity. We also show that the theory is consistent by providingan S5 Kripke model. The paper concludes with some discussion of the nature of the modalitiesinvolved, drawing comparisons with noneism, the view that there are some non-existent objects
Originalsprache | Englisch |
---|---|
Aufsatznummer | 2.6 |
Seiten (von - bis) | 139-150 |
Seitenumfang | 12 |
Fachzeitschrift | The Australasian Journal of Logic |
Jahrgang | 15 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - 2018 |
ÖFOS 2012
- 603113 Philosophie
Projekte
- 1 Abgeschlossen
-
Structuralism: The Roots of Mathematical Structuralism
Schiemer, G. & Kolowrat, F.
1/03/17 → 28/02/22
Projekt: Forschungsförderung