Bounded Littlewood identity related to alternating sign matrices

Ilse Fischer (Korresp. Autor*in)

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

An identity that is reminiscent of the Littlewood identity plays a fundamental role in recent proofs of the facts that alternating sign triangles are equinumerous with totally symmetric self-complementary plane partitions and that alternating sign trapezoids are equinumerous with holey cyclically symmetric lozenge tilings of a hexagon. We establish a bounded version of a generalization of this identity. Further, we provide combinatorial interpretations of both sides of the identity. The ultimate goal would be to construct a combinatorial proof of this identity (possibly via an appropriate variant of the Robinson-Schensted-Knuth correspondence) and its unbounded version, as this would improve the understanding of the mysterious relation between alternating sign trapezoids and plane partition objects.

OriginalspracheEnglisch
Aufsatznummere124
FachzeitschriftForum of Mathematics, Sigma
Jahrgang12
DOIs
PublikationsstatusElektronische Veröffentlichung vor Drucklegung - 13 Dez. 2024

ÖFOS 2012

  • 101012 Kombinatorik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Bounded Littlewood identity related to alternating sign matrices“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen