Carbonatite-melilitite-phosphate immiscible melts from the aragonite stability field entrained from the mantle by a Pliocene basalt

Vratislav Hurai, Monika Huraiová, Gerlinde Habler, Monika Horschinegg, Rastislav Milovský, Stanislava Milovská, Miroslav Hain, Rainer Abart (Korresp. Autor*in)

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

A plagioclase megacryst containing composite crystal-glass inclusions was ejected in a Pliocene basaltic diatreme in the Carpathian back-arc basin (Pannonian Basin). The megacryst grew from phonolitic melt, relics of which are preserved in the crystal-glass inclusions. Most of the pristine melt has undergone substantial compositional resetting by interaction with several batches of a low-viscosity carbonated, P-rich melilitite melt, which infiltrated and largely replaced the original inclusion content. The melilitite melt also caused partial resorption of the host megacryst and crystallisation of new calcic plagioclase forming stringers and palisades. A P-rich calcic carbonatite melt exsolved from the melilitite and later crystallised to aragonite at ~ 800 °C and 1.9 GPa. The phosphate melt fraction exsolved from the carbonatite and solidified as CO32−-rich A-B type apatite. At a very late evolutionary stage, K- and Si-rich fluids caused potassic and silicic alteration of the solidified melilitite glass along cracks and interfaces between calcic carbonate globules and glass at temperatures below 680 °C. The oxygen isotope composition of the plagioclase megacryst (6.2 ‰ V-SMOW; Vienna Standard Mean Ocean Water) and the 87Sr/86Sr isotope ratio of carbonates in the inclusions (0.7034) are consistent with a mantle-derived melt. 87Sr/86Sr isotope ratios (0.7047–0.7051) in interstitial carbonates from associated syenite and carbonatite xenoliths indicate a metasomatised mantle source contaminated with radiogenic crustal material or altered marine carbonate. The O-isotope ratios in the carbonates, 22.7 ± 0.6 ‰ V-SMOW in calcite and 23.6 ± 0.7 ‰ V-SMOW in aragonite, are also consistent with a sedimentary precursor. Contrasting δ13C values in the calcite, -12.7 ± 0.5 ‰ V-PDB (Vienna PeeDee Belemnite), and the aragonite (-4.6 ± 0.5 ‰ V-PDB) indicate low-temperature modification of calcite assisted by δ13C-depleted CO2 and preservation of primary magmatic δ13C values in aragonite. The microstructural and geochemical evidence points towards heterogeneous silicate-carbonate melt fractions generated during the metasomatism and partial melting of a supra-subduction mantle wedge.

OriginalspracheEnglisch
Seiten (von - bis)467-496
Seitenumfang30
FachzeitschriftMineralogy and Petrology
Jahrgang117
Ausgabenummer3
Frühes Online-Datum3 Juni 2022
DOIs
PublikationsstatusVeröffentlicht - Sep. 2023

ÖFOS 2012

  • 105120 Petrologie

Zitationsweisen