Projekte pro Jahr
Abstract
Let (M, g) be a complete Riemannian 3-manifold asymptotic to Schwarzschild-anti-deSitter and with scalar curvature R≥−6. Building on work of A. Neves and G. Tian and of the first-named author, we show that the leaves of the canonical foliation of (M, g) are the unique solutions of the isoperimetric problem for their area. The assumption R≥−6 is necessary. This is the first characterization result for large isoperimetric regions in the asymptotically hyperbolic setting that does not assume exact rotational symmetry at infinity.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 777 - 798 |
Seitenumfang | 22 |
Fachzeitschrift | Communications in Mathematical Physics |
Jahrgang | 368 |
Ausgabenummer | 2 |
DOIs | |
Publikationsstatus | Veröffentlicht - Juni 2019 |
ÖFOS 2012
- 101006 Differentialgeometrie
- 103028 Relativitätstheorie
Projekte
- 1 Laufend
-
Isoperimetrische Struktur von Anfangsdaten der Einstein-Gleichungen
1/01/17 → 31/12/24
Projekt: Forschungsförderung