Charmed roots and the Kroweras complement

Benjamin Dequêne, Gabriel Frieden, Alessandro Iraci, Florian Schreier-Aigner, Hugh Thomas, Nathan Williams (Korresp. Autor*in)

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

Although both noncrossing partitions and nonnesting partitions are uniformly enumerated for Weyl groups, the exact relationship between these two sets of combinatorial objects remains frustratingly mysterious. In this paper, we give a precise combinatorial answer in the case of the symmetric group: for any standard Coxeter element, we construct an equivariant bijection between noncrossing partitions under the Kreweras complement and nonnesting partitions under a Coxeter-theoretically natural cyclic action we call the Kroweras complement. Our equivariant bijection is the unique bijection that is both equivariant and support-preserving, and is built using local rules depending on a new definition of charmed roots. Charmed roots are determined by the choice of Coxeter element — in the special case of the linear Coxeter element (Formula presented.), we recover one of the standard bijections between noncrossing and nonnesting partitions.

OriginalspracheEnglisch
Aufsatznummere70025
Seitenumfang32
FachzeitschriftJournal of the London Mathematical Society
Jahrgang110
Ausgabenummer5
DOIs
PublikationsstatusVeröffentlicht - Nov. 2024

ÖFOS 2012

  • 101012 Kombinatorik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Charmed roots and the Kroweras complement“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen