TY - JOUR
T1 - Classification of anisotropic local Hardy spaces and inhomogeneous Triebel–Lizorkin spaces
AU - Velthoven, Jordy Timo van
AU - Voigtlaender, Felix
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/7
Y1 - 2024/7
N2 - This paper provides a characterization of when two expansive matrices yield the same anisotropic local Hardy and inhomogeneous Triebel–Lizorkin spaces. The characterization is in terms of the coarse equivalence of certain quasi-norms associated to the matrices. For nondiagonal matrices, these conditions are strictly weaker than those classifying the coincidence of the corresponding homogeneous function spaces. The obtained results complete the classification of anisotropic Besov and Triebel–Lizorkin spaces associated to general expansive matrices.
AB - This paper provides a characterization of when two expansive matrices yield the same anisotropic local Hardy and inhomogeneous Triebel–Lizorkin spaces. The characterization is in terms of the coarse equivalence of certain quasi-norms associated to the matrices. For nondiagonal matrices, these conditions are strictly weaker than those classifying the coincidence of the corresponding homogeneous function spaces. The obtained results complete the classification of anisotropic Besov and Triebel–Lizorkin spaces associated to general expansive matrices.
KW - Inhomogeneous function spaces
KW - Anisotropic function spaces
KW - Coarse equivalence
KW - Expansive matrices
KW - Triebel–Lizorkin spaces
UR - http://www.scopus.com/inward/record.url?scp=85196358252&partnerID=8YFLogxK
U2 - 10.1007/s00209-024-03538-0
DO - 10.1007/s00209-024-03538-0
M3 - Article
SN - 0025-5874
VL - 307
JO - Mathematische Zeitschrift
JF - Mathematische Zeitschrift
IS - 3
M1 - 55
ER -