TY - JOUR
T1 - Classification of anisotropic Triebel-Lizorkin spaces
AU - Koppensteiner, Sarah
AU - Velthoven, Jordy Timo van
AU - Voigtlaender, Felix
N1 - Publisher Copyright:
© The Author(s) 2023.
PY - 2024/6
Y1 - 2024/6
N2 - This paper provides a characterization of expansive matrices A∈GL(d,R) generating the same anisotropic homogeneous Triebel–Lizorkin space F˙
p,q
α(A) for α∈R and p,q∈(0,∞]. It is shown that F˙
p,q
α(A)=F˙
p,q
α(B) if and only if the homogeneous quasi-norms ρ
A,ρ
B associated to the matrices A, B are equivalent, except for the case F˙
p,2
0=L
p with p∈(1,∞). The obtained results complement and extend the classification of anisotropic Hardy spaces H
p(A)=F˙
p,2
0(A), p∈(0,1], in Bownik (Mem Am Math Soc 164(781):vi+122, 2003).
AB - This paper provides a characterization of expansive matrices A∈GL(d,R) generating the same anisotropic homogeneous Triebel–Lizorkin space F˙
p,q
α(A) for α∈R and p,q∈(0,∞]. It is shown that F˙
p,q
α(A)=F˙
p,q
α(B) if and only if the homogeneous quasi-norms ρ
A,ρ
B associated to the matrices A, B are equivalent, except for the case F˙
p,2
0=L
p with p∈(1,∞). The obtained results complement and extend the classification of anisotropic Hardy spaces H
p(A)=F˙
p,2
0(A), p∈(0,1], in Bownik (Mem Am Math Soc 164(781):vi+122, 2003).
KW - 42B25
KW - 42B35
KW - 46E35
UR - http://www.scopus.com/inward/record.url?scp=85166616454&partnerID=8YFLogxK
U2 - 10.1007/s00208-023-02690-y
DO - 10.1007/s00208-023-02690-y
M3 - Article
SN - 0025-5831
VL - 389
SP - 1883
EP - 1923
JO - Mathematische Annalen
JF - Mathematische Annalen
IS - 2
ER -