Abstract
We derive various classification results for polyharmonic helices, which are polyharmonic curves whose geodesic curvatures are all constant, in space forms. We obtain a complete classification of triharmonic helices in spheres of arbitrary dimension. Moreover, we show that polyharmonic helices of arbitrary order with non-zero geodesic curvatures to space forms of negative curvature must be geodesics.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1521-1537 |
Seitenumfang | 17 |
Fachzeitschrift | Comptes Rendus Mathematique |
Jahrgang | 362 |
DOIs | |
Publikationsstatus | Veröffentlicht - 2024 |
ÖFOS 2012
- 101006 Differentialgeometrie