Co-occurring nitrifying symbiont lineages are vertically inherited and widespread in marine sponges

Bettina Glasl (Korresp. Autor*in), Heidi M Luter, Katarina Damjanovic, Katharina Kitzinger, Anna J Mueller, Leonie Mahler, Joan Pamela Engelberts, Laura Rix, Jay T Osvatic, Bela Hausmann, Joana Séneca, Holger Daims, Petra Pjevac, Michael Wagner

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

Ammonia-oxidizing archaea and nitrite-oxidizing bacteria are common members of marine sponge microbiomes. They derive energy for carbon fixation and growth from nitrification—the aerobic oxidation of ammonia to nitrite and further to nitrate—and are proposed to play essential roles in the carbon and nitrogen cycling of sponge holobionts. In this study, we characterize two novel nitrifying symbiont lineages, Candidatus Nitrosokoinonia and Candidatus Nitrosymbion in the marine sponge Coscinoderma matthewsi using a combination of molecular tools, in situ visualization, and physiological rate measurements. Both represent a new genus in the ammonia-oxidizing archaeal class Nitrososphaeria and the nitrite-oxidizing bacterial order Nitrospirales, respectively. Furthermore, we show that larvae of this viviparous sponge are densely colonized by representatives of Ca. Nitrosokoinonia and Ca. Nitrosymbion indicating vertical transmission. In adults, the representatives of both symbiont genera are located extracellularly in the mesohyl. Comparative metagenome analyses and physiological data suggest that ammonia-oxidizing archaeal symbionts of the genus Ca. Nitrosokoinonia strongly rely on endogenously produced nitrogenous compounds (i.e. ammonium, urea, nitriles/cyanides, and creatinine) rather than on exogenous ammonium sources taken up by the sponge. Additionally, the nitrite-oxidizing bacterial symbionts of the genus Ca. Nitrosymbion may reciprocally support the ammonia-oxidizers with ammonia via the utilization of sponge-derived urea and cyanate. Comparative analyses of published environmental 16S rRNA gene amplicon data revealed that Ca. Nitrosokoinonia and Ca. Nitrosymbion are widely distributed and predominantly associated with marine sponges and corals, suggesting a broad relevance of our findings.

OriginalspracheEnglisch
Aufsatznummerwrae069
Seitenumfang47
FachzeitschriftThe ISME Journal
Jahrgang18
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 27 Apr. 2024

ÖFOS 2012

  • 106026 Ökosystemforschung
  • 106022 Mikrobiologie

Fingerprint

Untersuchen Sie die Forschungsthemen von „Co-occurring nitrifying symbiont lineages are vertically inherited and widespread in marine sponges“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen