Computational aspects of robust optimized certainty equivalents and option pricing

Daniel Bartl, Samuel Drapeau, Ludovic Tangpi

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

Accounting for model uncertainty in risk management and option pricing leads to infinite‐dimensional optimization problems that are both analytically and numerically intractable. In this article, we study when this hurdle can be overcome for the so‐called optimized certainty equivalent (OCE) risk measure—including the average value‐at‐risk as a special case. First, we focus on the case where the uncertainty is modeled by a nonlinear expectation that penalizes distributions that are “far” in terms of optimal‐transport distance (e.g. Wasserstein distance) from a given baseline distribution. It turns out that the computation of the robust OCE reduces to a finite‐dimensional problem, which in some cases can even be solved explicitly. This principle also applies to the shortfall risk measure as well as for the pricing of European options. Further, we derive convex dual representations of the robust OCE for measurable claims without any assumptions on the set of distributions. Finally, we give conditions on the latter set under which the robust average value‐at‐risk is a tail risk measure.
OriginalspracheEnglisch
Seiten (von - bis)287-309
Seitenumfang23
FachzeitschriftMathematical Finance: an international journal of mathematics, statistics and financial economics
Jahrgang30
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - Jan. 2020
Extern publiziertJa

ÖFOS 2012

  • 101024 Wahrscheinlichkeitstheorie
  • 101007 Finanzmathematik

Zitationsweisen