Concurrent Validity of Field-Based Diagnostic Technology Monitoring Movement Velocity in Powerlifting Exercises

Benedikt Mitter (Korresp. Autor*in), Dominik Hölbling, Pascal Bauer, Michael Stöckl, Arnold Baca, Harald Tschan

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed


The study was designed to investigate the validity of different technologies used to determine movement velocity in resistance training. Twenty-four experienced powerlifters (18 male and 6 female; age, 25.1 ± 5.1 years) completed a progressive loading test in the squat, bench press, and conventional deadlift until reaching their 1 repetition maximum. Peak and mean velocity were simultaneously recorded with 4 field-based systems: GymAware (GA), FitroDyne (FD), PUSH (PU), and Beast Sensor (BS). 3D motion capturing was used to calculate specific gold standard trajectory references for each device. GA provided the most accurate output across exercises (r = 0.99-1, ES = -0.05 to 0.1). FD showed similar results for peak velocity (r = 1, standardized mean bias [ES] = -0.1 to -0.02) but considerably less validity for mean velocity (r = 0.92-0.95, ES = -0.57 to -0.29). Reasonably valid to highly valid output was provided by PU in all exercises (r = 0.91-0.97, ES = -0.5 to 0.28) and by BS in the bench press and for mean velocity in the squat (r = 0.87-0.96, ES = -0.5 to -0.06). However, BS did not reach the thresholds for reasonable validity in the deadlift and for peak velocity in the squat, mostly due to high standardized mean bias (ES = -0.78 to -0.63). In conclusion, different technologies should not be used interchangeably. Practitioners who require negligible measurement error in their assessment of movement velocity are advised to use linear position transducers over inertial sensors.
Seiten (von - bis)2170–2178
FachzeitschriftJournal of Strength and Conditioning Research
Frühes Online-DatumApr. 2019
PublikationsstatusVeröffentlicht - Aug. 2021

ÖFOS 2012

  • 303028 Sportwissenschaft


  • Geschwindigkeitsbasiertes Krafttraining
  • Trägheitssensor
  • Linearer Positionsumwandler
  • Linearer Geschwindigkeitsumwandler