Abstract
Introduction For the classification of the complexity of cloacal malformations and the decision on the operative approach, an exact anatomical assessment is mandatory. To benefit from using three-dimensional (3D)-printed models in preoperative planning and training, the practicability of these models should be guaranteed. The aim of this study was to evaluate the quality and feasibility of a real-size 3D-printed cloaca model for the purpose of cysto-vaginoscopic evaluation.
Materials and Methods We performed a 3D reconstruction and printed a real-size, rubber-like 3D model of an infant pelvis with a cloacal malformation and asked invited pediatric surgeons and pediatric urologists to perform a cysto-vaginoscopy on the model and to complete a brief questionnaire to rate the quality and feasibility of the model and to indicate whether they would recommend the model for preoperative planning and training.
Results Overall, 41 participants rated the model quality as good to very good (M = 3.28, standard deviation [SD] = 0.50, on a scale from 1 to 4). The model was rated as feasible for preoperative training (M = 4.10, SD = 0.75, on a scale from 1 to 5) and most participants (85.4%) would recommend the model for preoperative training. The cysto-vaginoscopy of the model was considered as a valid training tool for real-life cases and improved the confidence on the anatomy of a cloaca.
Conclusion The results of our study indicate that patient-specific 3D-printed models might be a useful tool in the preoperative evaluation of complex anorectal malformations by simulation of cysto-vaginoscopy with an excellent view on anatomical structures to assess the whole spectrum of the individual cloacal malformation. Our model might be a valuable add-on tool for specialty training in pediatric colorectal surgery.
Materials and Methods We performed a 3D reconstruction and printed a real-size, rubber-like 3D model of an infant pelvis with a cloacal malformation and asked invited pediatric surgeons and pediatric urologists to perform a cysto-vaginoscopy on the model and to complete a brief questionnaire to rate the quality and feasibility of the model and to indicate whether they would recommend the model for preoperative planning and training.
Results Overall, 41 participants rated the model quality as good to very good (M = 3.28, standard deviation [SD] = 0.50, on a scale from 1 to 4). The model was rated as feasible for preoperative training (M = 4.10, SD = 0.75, on a scale from 1 to 5) and most participants (85.4%) would recommend the model for preoperative training. The cysto-vaginoscopy of the model was considered as a valid training tool for real-life cases and improved the confidence on the anatomy of a cloaca.
Conclusion The results of our study indicate that patient-specific 3D-printed models might be a useful tool in the preoperative evaluation of complex anorectal malformations by simulation of cysto-vaginoscopy with an excellent view on anatomical structures to assess the whole spectrum of the individual cloacal malformation. Our model might be a valuable add-on tool for specialty training in pediatric colorectal surgery.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 210-214 |
Fachzeitschrift | European Journal of Pediatric Surgery |
Jahrgang | 32 |
Ausgabenummer | 2 |
Frühes Online-Datum | 23 März 2021 |
DOIs | |
Publikationsstatus | Veröffentlicht - Apr. 2022 |
ÖFOS 2012
- 302037 Kinderchirurgie