Damping enhancement in YIG at millikelvin temperatures due to GGG substrate

Rostyslav O. Serha, Andrey A. Voronov, David Schmoll, Rebecca Klingbeil, Sebastian Knauer, Sabri Koraltan, Ekaterina Pribytova, Morris Lindner, Timmy Reimann, Carsten Dubs, Claas Abert, Roman Verba, Michal Urbánek, Dieter Suess, Andrii V. Chumak (Korresp. Autor*in)

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

Quantum magnonics aims to exploit the quantum mechanical properties of magnons for nanoscale quantum information technologies. Ferrimagnetic yttrium iron garnet (YIG), which offers the longest magnon lifetimes, is a key material typically grown on gadolinium gallium garnet (GGG) substrates for structural compatibility. However, the increased magnetic damping in YIG/GGG systems below 50$\,$K poses a challenge for quantum applications. Here, we study the damping in a 97$\,$nm-thick YIG film on a 500$\,\mu$m-thick GGG substrate at temperatures down to 30$\,$mK using ferromagnetic resonance (FMR) spectroscopy. We show that the dominant physical mechanism for the observed tenfold increase in FMR linewidth at millikelvin temperatures is the non-uniform bias magnetic field generated by the partially magnetized paramagnetic GGG substrate. Numerical simulations and analytical theory show that the GGG-driven linewidth enhancement can reach up to 6.7 times. In addition, at low temperatures and frequencies above 18$\,$GHz, the FMR linewidth deviates from the viscous Gilbert-damping model. These results allow the partial elimination of the damping mechanisms attributed to GGG, which is necessary for the advancement of solid-state quantum technologies.
OriginalspracheEnglisch
Aufsatznummer100025
FachzeitschriftMaterials Today Quantum
Jahrgang5
DOIs
PublikationsstatusVeröffentlicht - März 2025

ÖFOS 2012

  • 103017 Magnetismus

Fingerprint

Untersuchen Sie die Forschungsthemen von „Damping enhancement in YIG at millikelvin temperatures due to GGG substrate“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen