Demand Estimation Using Managerial Responses to Automated Price Recommendations

Daniel Garcia, Juha Tolvanen, Alexander K. Wagner

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

We provide a new framework to identify demand elasticities in markets where managers rely on algorithmic recommendations for price setting and apply it to a data set containing bookings for a sample ofmidsized hotels in Europe. Using nonbinding algorithmic price recommendations and observed delay in price adjustments by decision makers, we demonstrate that a control-function approach, combined with state-of-the-art modelselection techniques, can be used to isolate exogenous price variation and identify demand elasticities across hotel room types and over time. We confirm these elasticity estimates with a difference-in-differences approach that leverages the same delays in price adjustments by decisionmakers. However, the difference-in-differences estimates aremore noisy and only yield consistent estimates if data are pooled across hotels. We then apply our control-function approach to two classic questions in the dynamic pricing literature: the evolution of price elasticity of demand over and the effects of a transitory price change on future demand due to the presence of strategic buyers. Finally, we discuss how our empirical framework can be applied directly to other decision-making situations in which recommendation systems are used.

OriginalspracheEnglisch
Seiten (von - bis)7918-7939
Seitenumfang22
FachzeitschriftManagement Science
Jahrgang68
Ausgabenummer11
Frühes Online-Datum13 Jan. 2022
DOIs
PublikationsstatusVeröffentlicht - Nov. 2022

ÖFOS 2012

  • 502013 Industrieökonomik
  • 502044 Unternehmensführung
  • 502040 Tourismusforschung

Schlagwörter

  • CMI
  • Cat1

Zitationsweisen