Abstract
We prove that exactly 6 out of the 29 rational homology 3-spheres tessellated by four or less right-angled hyperbolic dodecahedra are L- spaces. The algorithm used is based on the L-space census provided by Dunfield in [12], and relies on a result by Rasmussen-Rasmussen [37]. We use the existence of these manifolds together with a result of Martelli [30] to construct explicit examples of hyperbolic 4- manifolds containing separating L-spaces, and therefore having vanishing Seiberg-Witten invariants. This answers a question asked by Agol and Lin in [1].
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 2095 -2134 |
Seitenumfang | 40 |
Fachzeitschrift | Communications in Analysis and Geometry |
Jahrgang | 32 |
Ausgabenummer | 8 |
DOIs | |
Publikationsstatus | Veröffentlicht - Dez. 2024 |
Extern publiziert | Ja |
ÖFOS 2012
- 101009 Geometrie
- 101022 Topologie