Duality for pathwise superhedging in continuous time

Daniel Bartl, Michael Kupper, David Prömel (Korresp. Autor*in), Ludovic Tangpi Ndounkeu

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

We provide a model-free pricing–hedging duality in continuous time. For a frictionless market consisting of d risky assets with continuous price trajectories, we show that the purely analytic problem of finding the minimal superhedging price of a path-dependent European option has the same value as the purely probabilistic problem of finding the supremum of the expectations of the option over all martingale measures. The superhedging problem is formulated with simple trading strategies, the claim is the limit inferior of continuous functions, which allows upper and lower semi-continuous claims, and superhedging is required in the pathwise sense on a σ-compact sample space of price trajectories. If the sample space is stable under stopping, the probabilistic problem reduces to finding the supremum over all martingale measures with compact support. As an application of the general results, we deduce dualities for Vovk’s outer measure and semi-static superhedging with finitely many securities.
OriginalspracheEnglisch
Seiten (von - bis)697-728
Seitenumfang32
FachzeitschriftFinance and Stochastics
Jahrgang23
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - 15 Juli 2019

ÖFOS 2012

  • 101024 Wahrscheinlichkeitstheorie
  • 101007 Finanzmathematik

Zitationsweisen