Projekte pro Jahr
Abstract
Large machine learning (ML) models with improved predictions have become widely available in the chemical sciences. Unfortunately, these models do not protect the privacy necessary within commercial settings, prohibiting the use of potentially extremely valuable data by others. Encrypting the prediction process can solve this problem by double-blind model evaluation and prohibits the extraction of training or query data. However, contemporary ML models based on fully homomorphic encryption or federated learning are either too expensive for practical use or have to trade higher speed for weaker security. We have implemented secure and computationally feasible encrypted ML models using oblivious transfer enabling and secure predictions of molecular quantum properties across chemical compound space. However, we find that encrypted predictions using kernel ridge regression models are a million times more expensive than without encryption. This demonstrates a dire need for a compact ML model architecture, including molecular representation and kernel matrix size, that minimizes model evaluation costs.
Originalsprache | Englisch |
---|---|
Aufsatznummer | 025017 |
Seitenumfang | 13 |
Fachzeitschrift | Machine Learning: Science and Technology |
Jahrgang | 4 |
Ausgabenummer | 2 |
DOIs | |
Publikationsstatus | Veröffentlicht - Juni 2023 |
ÖFOS 2012
- 103015 Kondensierte Materie
- 102019 Machine Learning
- 103006 Chemische Physik
Fingerprint
Untersuchen Sie die Forschungsthemen von „Encrypted machine learning of molecular quantum properties“. Zusammen bilden sie einen einzigartigen Fingerprint.Projekte
- 1 Abgeschlossen
-
QML: Quantum Machine Learning: Chemical Reactions with Unprecedented Speed and Accuracy
von Lilienfeld-Toal, O. A.
1/10/20 → 31/03/22
Projekt: Forschungsförderung