Evolutionary Developmental Biology and Human Language Evolution: Constraints on Adaptation

W. Tecumseh Fitch (Korresp. Autor*in)

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed


A tension has long existed between those biologists who emphasize the importance of adaptation by natural selection and those who highlight the role of phylogenetic and developmental constraints on organismal form and function. This contrast has been particularly noticeable in recent debates concerning the evolution of human language. Darwin himself acknowledged the existence and importance of both of these, and a long line of biologists have followed him in seeing, in the concept of "descent with modification", a framework naturally able to incorporate both adaptation and constraint. Today, the integrated perspective of modern evolutionary developmental biology ("evo-devo") allows a more subtle and pluralistic approach to these traditional questions, and has provided several examples where the traditional notion of "constraint" can be cashed out in specific, mechanistic terms. This integrated viewpoint is particularly relevant to the evolution of the multiple mechanisms underlying human language, because of the short time available for novel aspects of these mechanisms to evolve and be optimized. Comparative data indicate that many cognitive aspects of human language predate humans, suggesting that pre-adaptation and exaptation have played important roles in language evolution. Thus, substantial components of what many linguists call "Universal Grammar" predate language itself. However, at least some of these older mechanisms have been combined in ways that generate true novelty. I suggest that we can insightfully exploit major steps forward in our understanding of evolution and development, to gain a richer understanding of the principles that underlie human language evolution.
Seiten (von - bis)613-637
FachzeitschriftEvolutionary Biology
Ausgabenummer4, SI
PublikationsstatusVeröffentlicht - 2012

ÖFOS 2012

  • 106025 Neurobiologie