Projekte pro Jahr
Abstract
Optimizing a target function over the space of organic molecules is an important problem appearing in many fields of applied science but also a very difficult one due to the vast number of possible molecular systems. We propose an evolutionary Monte Carlo algorithm for solving such problems which is capable of straightforwardly tuning both exploration and exploitation characteristics of an optimization procedure while retaining favorable properties of genetic algorithms. The method, dubbed MOSAiCS (Metropolis Optimization by Sampling Adaptively in Chemical Space), is tested on problems related to optimizing components of battery electrolytes, namely, minimizing solvation energy in water or maximizing dipole moment while enforcing a lower bound on the HOMO-LUMO gap; optimization was carried out over sets of molecular graphs inspired by QM9 and Electrolyte Genome Project (EGP) data sets. MOSAiCS reliably generated molecular candidates with good target quantity values, which were in most cases better than the ones found in QM9 or EGP. While the optimization results presented in this work sometimes required up to 106 QM calculations and were thus feasible only thanks to computationally efficient ab initio approximations of properties of interest, we discuss possible strategies for accelerating MOSAiCS using machine learning approaches.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 8861-8870 |
Seitenumfang | 10 |
Fachzeitschrift | Journal of Chemical Theory and Computation |
Jahrgang | 19 |
Ausgabenummer | 23 |
DOIs | |
Publikationsstatus | Veröffentlicht - 12 Dez. 2023 |
ÖFOS 2012
- 103006 Chemische Physik
Fingerprint
Untersuchen Sie die Forschungsthemen von „Evolutionary Monte Carlo of QM Properties in Chemical Space: Electrolyte Design“. Zusammen bilden sie einen einzigartigen Fingerprint.Projekte
- 2 Abgeschlossen
-
QML: Quantum Machine Learning: Chemical Reactions with Unprecedented Speed and Accuracy
von Lilienfeld-Toal, O. A.
1/10/20 → 31/03/22
Projekt: Forschungsförderung
-
BIG-MAP: Battery Interface Genome - Materials Acceleration Platform
von Lilienfeld-Toal, O. A.
1/09/20 → 31/08/23
Projekt: Forschungsförderung