Exploring the upper pH limits of nitrite oxidation: diversity, ecophysiology, and adaptive traits of haloalkalitolerant Nitrospira

Anne Daebeler (Korresp. Autor*in), Katharina Kitzinger, Hanna Koch, Craig Herbold, Michaela Steinfeder, Jasmin Schwarz, Thomas Zechmeister, Soren M. Karst, Mads Albertsen, Per Halkjaer Nielsen, Michael Wagner, Holger Daims (Korresp. Autor*in)

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

Nitrite-oxidizing bacteria of the genus Nitrospira are key players of the biogeochemical nitrogen cycle. However, little is known about their occurrence and survival strategies in extreme pH environments. Here, we report on the discovery of physiologically versatile, haloalkalitolerant Nitrospira that drive nitrite oxidation at exceptionally high pH. Nitrospira distribution, diversity, and ecophysiology were studied in hypo- and subsaline (1.3-12.8 g salt/l), highly alkaline (pH 8.9-10.3) lakes by amplicon sequencing, metagenomics, and cultivation-based approaches. Surprisingly, not only were Nitrospira populations detected, but they were also considerably diverse with presence of members from Nitrospira lineages I, II and IV. Furthermore, the ability of Nitrospira enrichment cultures to oxidize nitrite at neutral to highly alkaline pH of 10.5 was demonstrated. Metagenomic analysis of a newly enriched Nitrospira lineage IV species, "Candidatus Nitrospira alkalitolerans", revealed numerous adaptive features of this organism to its extreme environment. Among them were a sodium-dependent N-type ATPase and NADH:quinone oxidoreductase next to the proton-driven forms usually found in Nitrospira. Other functions aid in pH and cation homeostasis and osmotic stress defense. "Ca. Nitrospira alkalitolerans" also possesses group 2a and 3b [NiFe] hydrogenases, suggesting it can use hydrogen as alternative energy source. These results reveal how Nitrospira cope with strongly fluctuating pH and salinity conditions and expand our knowledge of nitrogen cycling in extreme habitats.
OriginalspracheEnglisch
Seiten (von - bis)2967-2979
Seitenumfang13
FachzeitschriftISME Journal
Jahrgang14
Ausgabenummer12
Frühes Online-Datum24 Juli 2020
DOIs
PublikationsstatusVeröffentlicht - Dez. 2020

ÖFOS 2012

  • 106026 Ökosystemforschung
  • 106022 Mikrobiologie

Schlagwörter

  • Environmental Microbiology
  • microbial ecolgoy
  • Nitrospira

Zitationsweisen