Abstract
We consider the robust exponential utility maximization problem in discrete time: An investor maximizes the worst case expected exponential utility with respect to a family of non-dominated probabilistic models of her endowment by dynamically investing in a financial market. We show that, for any measurable random endowment (regardless of whether the problem is finite or not) an optimal strategy exists, a dual representation in terms of martingale measures holds true, and that the problem satisfies the dynamic programming principle.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 577-612 |
Seitenumfang | 36 |
Fachzeitschrift | Annals of Applied Probability |
Jahrgang | 29 |
Ausgabenummer | 1 |
DOIs | |
Publikationsstatus | Veröffentlicht - Feb. 2019 |
Extern publiziert | Ja |
ÖFOS 2012
- 101024 Wahrscheinlichkeitstheorie
- 101007 Finanzmathematik
- 101019 Stochastik