Foliations of asymptotically flat 3-manifolds by stable constant mean curvature spheres

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

Let (M, g) be an asymptotically flat Riemannian manifold of dimension n ≥ 3 with positive mass. We give a short proof based on Lyapunov-Schmidt reduction of the existence of an asymptotic foliation of (M, g) by stable constant mean curvature spheres. Moreover, we show that the geometric center of mass of the foliation agrees with the Hamiltonian center of mass of (M, g). In dimension n = 3, these results were shown previously by C. Nerz using a different approach. In the case where n = 3 and the scalar curvature of (M, g) is nonnegative, we prove that the leaves of the asymptotic foliation are the only large stable constant mean curvature spheres that enclose the center of (M, g). This was shown previously under more restrictive decay assumptions and using a different method by S. Ma.

OriginalspracheEnglisch
Seiten (von - bis)1037-1083
Seitenumfang47
FachzeitschriftJournal of Differential Geometry
Jahrgang128
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - Nov. 2024

ÖFOS 2012

  • 101006 Differentialgeometrie

Fingerprint

Untersuchen Sie die Forschungsthemen von „Foliations of asymptotically flat 3-manifolds by stable constant mean curvature spheres“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen