Gaussian Processes for Improved Dynamic Modeling in the Predictive Control of an Arduino Temperature Control Lab

Idris Sadik, Armin Kuper, Steffen Waldherr

Veröffentlichungen: Beitrag in BuchBeitrag in KonferenzbandPeer Reviewed

Abstract

A practical application of Gaussian processes (GPs) as an alternative nonlinear system identification approach in model predictive control (MPC) is presented. By means of using an Arduino Temperature Control Lab, setpoint tracking accuracy for a Gaussian process-based MPC scheme is compared to state space MPC and a proportional-integral-derivative (PID) controller. Foregoing parameterized system identification, GPs are proven to offer superior accuracy, while eliminating the tedious developments plaguing first-principle nonlinear alternatives. By further utilizing GPs probabilistic framework, estimates for variance are interpreted as system-specific uncertainty and used to better select control solutions that remain in training regions. Including variance within the optimal control problem (as opposed to its exclusion), improved overall setpoint tracking and affords a more cautious controller.

OriginalspracheEnglisch
Titel2021 European Control Conference, ECC 2021
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten1757-1763
Seitenumfang7
ISBN (elektronisch)978-9-4638-4236-5
ISBN (Print)978-1-6654-7945-5
DOIs
PublikationsstatusVeröffentlicht - 2021
Extern publiziertJa
Veranstaltung2021 European Control Conference, ECC 2021 - Delft, Niederlande
Dauer: 29 Juni 20212 Juli 2021

Konferenz

Konferenz2021 European Control Conference, ECC 2021
Land/GebietNiederlande
OrtDelft
Zeitraum29/06/212/07/21

ÖFOS 2012

  • 202034 Regelungstechnik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Gaussian Processes for Improved Dynamic Modeling in the Predictive Control of an Arduino Temperature Control Lab“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen