Abstract
A mechanism for emergent gravity on brane solutions in Yang-Mills matrix models is exhibited. Newtonian gravity and a partial relation between the Einstein tensor and the energy-momentum tensor can arise from the basic matrix model action, without invoking an Einstein-Hilbert-type term. The key requirements are compactified extra dimensions with extrinsic curvature M^4 x K \subset R^D and split noncommutativity, with a Poisson tensor \theta^{ab} linking the compact with the noncompact directions. The moduli of the compactification provide the dominant degrees of freedom for gravity, which are transmitted to the 4 noncompact directions via the Poisson tensor. The effective Newton constant is determined by the scale of noncommutativity and the compactification. This gravity theory is well suited for quantization, and argued to be perturbatively finite for the IKKT model. Since no compactification of the target space is needed, it might provide a way to avoid the landscape problem in string theory.
Originalsprache | Englisch |
---|---|
Aufsatznummer | 156 |
Seitenumfang | 37 |
Fachzeitschrift | Journal of High Energy Physics |
Jahrgang | 2012 |
Ausgabenummer | 7 |
DOIs | |
Publikationsstatus | Veröffentlicht - 2012 |
Extern publiziert | Ja |
ÖFOS 2012
- 103012 Hochenergiephysik
- 103019 Mathematische Physik