Gromov–Hausdorff stability of tori under Ricci and integral scalar curvature bounds

Shouhei Honda, Christian Ketterer, Ilaria Mondello, Raquel Perales, Chiara Rigoni

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

We establish a nonlinear analogue of a splitting map into a Euclidean space, as a harmonic map into a flat torus. We prove that the existence of such a map implies Gromov–Hausdorff closeness to a flat torus in any dimension. Furthermore, Gromov–Hausdorff closeness to a flat torus and an integral bound on rM(x), the smallest eigenvalue of the Ricci tensor ricx in x, imply the existence of a harmonic splitting map. Combining these results with Stern's inequality, we provide a new Gromov–Hausdorff stability theorem for flat 3-tori. The main tools we employ include the harmonic map heat flow, Ricci flow, and both Ricci limits and RCD theories.

OriginalspracheEnglisch
Aufsatznummer113629
FachzeitschriftNonlinear Analysis
Jahrgang249
DOIs
PublikationsstatusVeröffentlicht - Dez. 2024

ÖFOS 2012

  • 101032 Funktionalanalysis
  • 101006 Differentialgeometrie

Fingerprint

Untersuchen Sie die Forschungsthemen von „Gromov–Hausdorff stability of tori under Ricci and integral scalar curvature bounds“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen