Abstract
We establish a nonlinear analogue of a splitting map into a Euclidean space, as a harmonic map into a flat torus. We prove that the existence of such a map implies Gromov–Hausdorff closeness to a flat torus in any dimension. Furthermore, Gromov–Hausdorff closeness to a flat torus and an integral bound on rM(x), the smallest eigenvalue of the Ricci tensor ricx in x, imply the existence of a harmonic splitting map. Combining these results with Stern's inequality, we provide a new Gromov–Hausdorff stability theorem for flat 3-tori. The main tools we employ include the harmonic map heat flow, Ricci flow, and both Ricci limits and RCD theories.
Originalsprache | Englisch |
---|---|
Aufsatznummer | 113629 |
Fachzeitschrift | Nonlinear Analysis |
Jahrgang | 249 |
DOIs | |
Publikationsstatus | Veröffentlicht - Dez. 2024 |
ÖFOS 2012
- 101032 Funktionalanalysis
- 101006 Differentialgeometrie