Hausdorff dimension for some hyperbolic attractors with overlaps and without finite Markov partition

Franz Hofbauer, Peter Raith, Károly Simon

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

In this paper some families of skew product self maps~$F$ on the square are considered. The main example is a family forming a two dimensional analogue of the tent map family. According to the assumptions made in the paper these maps are almost injective. This means that the points of the attractor having more than one inverse image form a set of measure zero for all interesting measures. It may be that $F$ does not have a finite Markov partition. The Hausdorff dimension of the attractor is computed.
OriginalspracheEnglisch
Seiten (von - bis)1143-1165
Seitenumfang23
FachzeitschriftErgodic Theory and Dynamical Systems
Jahrgang27
PublikationsstatusVeröffentlicht - 2007

ÖFOS 2012

  • 1010 Mathematik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Hausdorff dimension for some hyperbolic attractors with overlaps and without finite Markov partition“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen