Higher Independence

Vera Fischer, Diana Carolina Montoya Amaya

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

We study higher analogues of the classical independence number on ω. For κ regular uncountable, we denote by i(κ) the minimal size of a maximal κ-independent family. We establish ZFC relations between i(κ) and the standard higher analogues of some of the classical cardinal characteristics, e.g., r(κ) ≤ i(κ) and d(κ) ≤ i(κ). For κ measurable, assuming that 2κ = κ+ we construct a maximal κ-independent family which remains maximal after the κ-support product of λ many copies of κ-Sacks forcing. Thus, we show the consistency of κ+ = d(κ) = i(κ) < 2κ.We conclude the paper with interesting open questions and discuss difficulties regarding other natural approaches to higher independence.

OriginalspracheEnglisch
Seiten (von - bis)1606-1630
Seitenumfang25
FachzeitschriftJournal of Symbolic Logic
Jahrgang87
Ausgabenummer4
DOIs
PublikationsstatusVeröffentlicht - Dez. 2022

ÖFOS 2012

  • 101013 Mathematische Logik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Higher Independence“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen