TY - JOUR
T1 - Hydrolysis of Antimicrobial Peptides by Extracellular Peptidases in Wastewater
AU - Wichmann, Natalie
AU - Gruseck, Richard
AU - Zumstein, Michael
N1 - Publisher Copyright:
© 2023 The Authors. Published by American Chemical Society.
PY - 2024/1/9
Y1 - 2024/1/9
N2 - Several antimicrobial peptides (AMPs) are emerging as promising novel antibiotics. When released into wastewater streams after use, AMPs might be hydrolyzed and inactivated by wastewater peptidases─resulting in a reduced release of active antimicrobials into wastewater-receiving environments. A key step towards a better understanding of the fate of AMPs in wastewater systems is to investigate the activity and specificity of wastewater peptidases. Here, we quantified peptidase activity in extracellular extracts from different stages throughout the wastewater treatment process. For all four tested municipal wastewater treatment plants, we detected highest activity in raw wastewater. Complementarily, we assessed the potential of enzymes in raw wastewater extracts to biotransform 10 selected AMPs. We found large variations in the susceptibility of AMPs to enzymatic transformation, indicating substantial substrate specificity of extracted enzymes. To obtain insights into peptidase specificities, we searched for hydrolysis products of rapidly biotransformed AMPs and quantified selected products using synthetic standards. We found that hydrolysis occurred at specific sites and that these sites were remarkably conserved across the four tested wastewaters. Together, these findings provide insights into the fate of AMPs in wastewater systems and can inform the selection and design of peptide-based antibiotics that are hydrolyzable by wastewater peptidases.
AB - Several antimicrobial peptides (AMPs) are emerging as promising novel antibiotics. When released into wastewater streams after use, AMPs might be hydrolyzed and inactivated by wastewater peptidases─resulting in a reduced release of active antimicrobials into wastewater-receiving environments. A key step towards a better understanding of the fate of AMPs in wastewater systems is to investigate the activity and specificity of wastewater peptidases. Here, we quantified peptidase activity in extracellular extracts from different stages throughout the wastewater treatment process. For all four tested municipal wastewater treatment plants, we detected highest activity in raw wastewater. Complementarily, we assessed the potential of enzymes in raw wastewater extracts to biotransform 10 selected AMPs. We found large variations in the susceptibility of AMPs to enzymatic transformation, indicating substantial substrate specificity of extracted enzymes. To obtain insights into peptidase specificities, we searched for hydrolysis products of rapidly biotransformed AMPs and quantified selected products using synthetic standards. We found that hydrolysis occurred at specific sites and that these sites were remarkably conserved across the four tested wastewaters. Together, these findings provide insights into the fate of AMPs in wastewater systems and can inform the selection and design of peptide-based antibiotics that are hydrolyzable by wastewater peptidases.
KW - LC-HRMS
KW - antimicrobial peptides
KW - biotransformation
KW - extracellular enzymes
KW - wastewater treatment
UR - http://www.scopus.com/inward/record.url?scp=85180963507&partnerID=8YFLogxK
U2 - 10.1021/acs.est.3c06506
DO - 10.1021/acs.est.3c06506
M3 - Article
C2 - 38103013
VL - 58
SP - 717
EP - 726
JO - Environmental Science & Technology
JF - Environmental Science & Technology
SN - 0013-936X
IS - 1
ER -