Abstract
The upper crust of the KTB (Kontinentales Tiefbohrprogramm) area in the Southeastern Germany is a focal point for the Earth Science community due to the huge amount of information collected throughout the last 30 yr. In this study, we explore the crustal structure of the KTB area through the application of the Receiver Function (RF) technique to a new data set recorded by nine temporary seismic stations and one permanent station. We aim to unravel the isotropic structure and compare our results with previous information from the reflection profiles collected during the initial site investigations. Due to the large amount of information collected by previous studies, in terms of P-wave velocity, depth and location of major reflectors, depth reconstruction of major faults zones, this area represents a unique occasion to test the resolution capability of a passive seismological study performed by the application of the RF. We aim to verify which contribution could be given by the application of the RF technique, for future studies, in order to get clear images of the deep structure and up to which resolution. The RF technique has apparently not been applied in the area before, yet it may give useful additional insight in subsurface structure, particularly at depths larger than the maximum depth reached by drilling, but also on structures in the upper crust, around the area that has been studied in detail previously. In our results vS-depth profiles for stations located on the same geological units display common features and show shallow S-wave velocities typical of the outcropping geological units (i.e. sedimentary basin, granites and metamorphic rocks). At around 10 km depth, we observe a strong velocity increase beneath all stations. For the stations located in the centre of the area, this variation is weaker, which we assume to be the signature of the main tectonic suture in the area (i.e. the Saxothuringian-Moldanubian suture), along a west-to-east extended region, may be due to the presence of the allochthonous klippe trapped between the main crustal terrains that came in touch during the Variscan orogeny. In the lower crust we see only small variations throughout the area, at the resolution that is possible with a small temporary experiment with just 10 stations.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 2138-2146 |
Seitenumfang | 8 |
Fachzeitschrift | Geophysical Journal International |
Jahrgang | 213 |
Ausgabenummer | 3 |
DOIs | |
Publikationsstatus | Veröffentlicht - Juni 2018 |
ÖFOS 2012
- 105106 Geodynamik
- 105122 Seismik
- 105124 Tektonik