Inference of Kinetics in Population Balance Models using Gaussian Process Regression

Michiel Busschaert, Stefen Waldherr

Veröffentlichungen: Beitrag in FachzeitschriftMeeting Abstract/Conference PaperPeer Reviewed

Abstract

Population balance models are used to describe systems composed of individual entities dispersed in a continuous phase. Identification of system dynamics is an essential yet difficult step in the modeling of population systems. In this paper, Gaussian processes are utilized to infer kinetics of a population model, including interaction with a continuous phase, from measurements via non-parametric regression. Under a few conditions, it is shown that the population kinetics in the process model can be estimated from the moment dynamics, rather than the entire population distribution. The method is illustrated with a numerical case study regarding crystallization, in order to infer growth and nucleation rates from varying noise-induced simulation data.

OriginalspracheEnglisch
Seiten (von - bis)384-391
Seitenumfang8
FachzeitschriftIFAC-PapersOnLine
Jahrgang55
Ausgabenummer7
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung13th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems, DYCOPS 2022 - Busan, Südkorea
Dauer: 14 Juni 202217 Juni 2022

ÖFOS 2012

  • 204003 Chemische Verfahrenstechnik
  • 101028 Mathematische Modellierung

Fingerprint

Untersuchen Sie die Forschungsthemen von „Inference of Kinetics in Population Balance Models using Gaussian Process Regression“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen