Infinitesimal and infinite numbers in applied mathematics

Aleksandr Bryzgalov, Kevin Islami, Paolo Giordano (Korresp. Autor*in)

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

The need to describe abrupt changes or response of nonlinear systems to impulsive stimuli is ubiquitous in applications. Also the informal use of infinitesimal and infinite quantities is still a method used to construct idealized but tractable models within the famous J. von Neumann reasonably wide area of applicability. We review the theory of generalized smooth functions as a candidate to address both these needs: a rigorous but simple language of infinitesimal and infinite quantities, and the possibility to deal with continuous and generalized function as if they were smooth maps: with pointwise values, free composition and hence nonlinear operations, all the classical theorems of calculus, a good integration theory, and new existence results for differential equations. We exemplify the applications of this theory through several models of singular dynamical systems: deduction of the heat and wave equations extended to generalized functions, a singular variable length pendulum wrapping on a parallelepiped, the oscillation of a pendulum damped by different media, a nonlinear stress–strain model of steel, singular Lagrangians as used in optics, and some examples from quantum mechanics.

OriginalspracheEnglisch
Seiten (von - bis)20573-20609
Seitenumfang37
FachzeitschriftNonlinear Dynamics
Jahrgang112
Ausgabenummer23
DOIs
PublikationsstatusVeröffentlicht - Dez. 2024

ÖFOS 2012

  • 101002 Analysis
  • 103018 Materialphysik
  • 103036 Theoretische Physik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Infinitesimal and infinite numbers in applied mathematics“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen