Integrating Network Pharmacology and Molecular Docking Approach to Elucidate the Mechanism of Commiphora wightii for the Treatment of Rheumatoid Arthritis

Mostafa A Abdel-Maksoud, Mostafa A Askar (Korresp. Autor*in), Ibrahim Y Abdel-Rahman, Mustafa Gharib, Mohammed Aufy

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

BACKGROUND: Rheumatoid arthritis (RA) is considered a notable prolonged inflammatory condition with no proper cure. Synovial inflammation and synovial pannus are crucial in the onset of RA. The "tumor-like" invading proliferation of new arteries is a keynote of RA. Commiphora wightii (C wightii) is a perennial, deciduous, and trifoliate plant used in several areas of southeast Asia to cure numerous ailments, including arthritis, diabetes, obesity, and asthma. Several in vitro investigations have indicated C wightii's therapeutic efficacy in the treatment of arthritis. However, the precise molecular action is yet unknown.

MATERIAL AND METHODS: In this study, a network pharmacology approach was applied to uncover potential targets, active therapeutic ingredients and signaling pathways in C wightii for the treatment of arthritis. In the groundwork of this research, we examined the active constituent-compound-target-pathway network and evaluated that (Guggulsterol-V, Myrrhahnone B, and Campesterol) decisively donated to the development of arthritis by affecting tumor necrosis factor (TNF), PIK3CA, and MAPK3 genes. Later on, docking was employed to confirm the active components' efficiency against the potential targets.

RESULTS: According to molecular-docking research, several potential targets of RA bind tightly with the corresponding key active ingredient of C wightii. With the aid of network pharmacology techniques, we conclude that the signaling pathways and biological processes involved in C wightii had an impact on the prevention of arthritis. The outcomes of molecular docking also serve as strong recommendations for future research. In the context of this study, network pharmacology combined with molecular docking analysis showed that C wightii acted on arthritis-related signaling pathways to exhibit a promising preventive impact on arthritis.

CONCLUSION: These results serve as the basis for grasping the mechanism of the antiarthritis activity of C wightii. However, further in vivo/in vitro study is needed to verify the reliability of these targets for the treatment of arthritis.

OriginalspracheEnglisch
Seiten (von - bis)1-13
Seitenumfang13
FachzeitschriftBioinformatics and biology insights
Jahrgang18
DOIs
PublikationsstatusVeröffentlicht - 18 Mai 2024

ÖFOS 2012

  • 106005 Bioinformatik

Zitationsweisen