Interpretable Riemannian Classification in Brain-Computer Interfacing

Jiachen Xu, Moritz Grosse-Wentrup, Vinay Jayaram

Veröffentlichungen: Beitrag in BuchBeitrag in KonferenzbandPeer Reviewed

Abstract

Riemannian methods are currently one of the best ways of building classifiers for EEG data in a brain-computer interface (BCI). However, they are computationally complex and suffer from a lack of interpretability. Since the full covariance matrix is used for each classification, it is not immediately possible to see what underlying signals are generating the classified changes in variance. Particularly in a rehabilitation context, where it is essential to control which brain signals are used for classification, this can be a severely limiting factor. Further, the requirement to perform a matrix logarithm can become prohibitively complex for real-time computation. In this work, we explore a method for extracting spatial filters from a solution in the Riemannian tangentspaceandcompareitagainstcommonspatialpatterns. Weshowviacomparisonsonmultipleopen-access datasetsthatitispossibletogeneratefiltersthatapproach the performance of the full Riemannian solution while maintaining interpretability.
OriginalspracheEnglisch
TitelProceedings of the 8th Graz Brain-Computer Interface Conference 2019
Seitenumfang6
DOIs
PublikationsstatusVeröffentlicht - 17 Sept. 2019
Veranstaltung8th Graz Brain-Computer Interface Conference 2019 - TU Graz, Graz, Österreich
Dauer: 16 Sept. 201920 Sept. 2019
https://www.tugraz.at/institutes/ine/graz-bci-conferences/8th-graz-bci-conference-2019/

Konferenz

Konferenz8th Graz Brain-Computer Interface Conference 2019
Land/GebietÖsterreich
OrtGraz
Zeitraum16/09/1920/09/19
Internetadresse

ÖFOS 2012

  • 206001 Biomedizinische Technik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Interpretable Riemannian Classification in Brain-Computer Interfacing“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen