Invariants of r-spin TQFTs and non-semisimplicity

Nils Carqueville, Ehud Meir, Lóránt Szegedy (Korresp. Autor*in)

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

For a positive integer r, an r-spin topological quantum field theory is a 2-dimensional TQFT with tangential structure given by the r-fold cover of SO2. In particular, such a TQFT assigns a scalar invariant to every closed r-spin surface Σ. Given a sequence of scalars indexed by the set of diffeomorphism classes of all such Σ, we construct a symmetric monoidal category C and a C-valued r-spin TQFT which reproduces the given sequence. We also determine when such a sequence arises from a TQFT valued in an abelian category with finite-dimensional Hom spaces. In particular, we construct TQFTs with values in super vector spaces that can distinguish all diffeomorphism classes of r-spin surfaces, and we show that the Frobenius algebras associated to such TQFTs are necessarily non-semisimple.
OriginalspracheEnglisch
Seiten (von - bis)101-128
Seitenumfang28
FachzeitschriftJournal of Algebra
Jahrgang664/Part A
DOIs
PublikationsstatusVeröffentlicht - 15 Feb. 2025

ÖFOS 2012

  • 103019 Mathematische Physik
  • 103024 Quantenfeldtheorie

Fingerprint

Untersuchen Sie die Forschungsthemen von „Invariants of r-spin TQFTs and non-semisimplicity“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen